Supercomputing Visualization for Earth Science Datasets

P. Peggy Li
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109
Pegoy.Li@jpl.nasa.qgov

Abstract — Two Supercomputer-based parallel visualization
systems, RIVA and ParVox, are presented in this paper.
RIVA (Remote Interactive Visualization and Analysis)
System is a parallel terrain rendering system and ParVox
(PARallel VOXel renderer) is a parallel volume rendering
syssem for multiple-variable, timewvarying, 3D volume
datasets in structured grid and unstructured grid. Both
systems are designed for interactive visualization of very
large scientific datasets on remote supercomputers. The
system architectures and the parallel algorithms are
described in this paper. In addition, we will use North
Atlantic Ocean M odel as a sample application to demonstrate
how RIVA and ParVox can help scientists to discover and
present their scientific results.

I. INTRODUCTION

There are two main driving forces behind the
development of software-based parallel rendering systems:
1. the use of supercomputers for large scale scientific
modeling and simulations enables the modelers to generate
larger data volumes in greater speed, thus, it becomes
impractical to transfer, store, and visualize large volumes
of datasets on user’s local workstation. Second, high-
resolution terrain rendering and volume rendering of large
datasets demand both extensive computational and storage
resources which aworkstation can hardly provide.

Parallel rendering algorithms are mainly based on
three different sequential approaches: ray casting,
shearing, and forward projection. Ray-casting can be
easily parallelized using image space decomposition, but
it requires input data set available at every rendering node,
thus not suitable for distributed memory paralle
architectures. Forward projection is used by most graphics
hardware for polygon rendering. It is ideal for object
space decomposition and is the most efficient algorithm
for rendering very large datasets.

We developed two new parallel rendering agorithms
based on the forward projection approach, the whole earth
renderer for terrain datasets and the parallel splatting
algorithm for 3D volume datasets. We also designed and
implemented two distributed visualization systems around
these rendering algorithms. In section I, we present the
first system, RIVA (Remote Interactive Visualization and
Analysis) system, for large terrain data sets [1]. In section
I, we present the second system, ParVox (PARallel

VOXel Rendering) for timevarying, multi-variable
volume data sets [2]. In Section IV, we present an ocean
model applica-tion and its visual results using both RIVA
and ParVox.

Il. RIVA SYSTEM OVERVIEW

The kernel of the RIVA system is a parallel terrain
renderer running on parallel supercomputers. The renderer
produced 3D perspective views of terrain using earth or
planetary images or simulation datasets with coregistered
digital elevation data. Because the underlying geometric
mode is that of a sphere, the renderer can accommodate
global datasets; accordingly we refer to this renderer as the
whole earth renderer.

A System Architecture

Around the core renderer, RIVA is equipped with a
suite of Graphic User Interface (GUI) programs for data
navigation, display and animation editing. As depicted in
the system architecture diagram in Fig. 1, the main RIVA
data navigator program, Flexible Flyer, resides on a SGI
workstation. A low resolution copy of the dataset is
loaded into the Flexible Flyer and user can navigate the
dataset and select the desired views. Asthe user navigates,
his/her viewpoint is transmitted to the whole earth renderer
residing on a remote supercomputer via a network
interface program, NetHost. The renderer renders the
image using a full resolution copy of the dataset and sends
the resulting image back to a display window,
receive_display, on the user’ s workstation.

RIVA is designed for both interactive exploration of
large datasets and batch generation of animations. The
Flexible Flyer has a key frame editor built in where key
frames can be inserted, appended, modified, and
previewed. A separate 2-D map display window, xshow,
displays the key frames or the flight path on a 2D map of
the data. It helps a user to identify his location and
direction in a globa orientation and also help a user to
select key frames in a more even pace. Once the key
frames are selected, the flight path is calculated using a
cubic spline agorithm. The renderer then renders the
flight path in the batch mode and save the animation
frames into disk.

RIVA Architecture

xshow
SGI Origin 2000

SGI Workstation

Whole Earth
Renderer

~

~

Input data Rendered Images
Flight Path for Animation

Receive_display

Fig. 1 The RIVA System Architecture

The middle section of Fig. 1 is the network interface
programs for RIVA. NetHost is the interface (or, host)
program between the GUI and the renderer. RIVA usa
text-based command language to communicate with the
renderer. NetHost is the one who processes and dispatches
commands, receives and distributes results. The
commands may come from a network interface, such as a
socket stream fed by the GUI programor from a disk file.
The Router is a routing daemon that facilitates dynamic,
reliable, multi-casting message passing services. It
detached the physical connection between the renderer and
the GUI program, thus allowing either part of the program
to run as a stand alone entity, arenderer to feed multiple
displays on different workstations, or even one GUI
program to control two parallel renderers.

B. Paralld Algorithm

Rather than using geometric objects (such as triangle
strips) to represent the dgital terrain as al the hardware-
based terrain renderers do, the whole earth renderer
represents and renders the terrain pixel by pixel. We use a
paralel forward projection rendering algorithm with both
object space decomposition and image space decomp
sition. The detail of the algorithm can be found in [1], here
is a brief summary of the algorithm. The input data, both
image and elevation in either cylindrical projection or
sinusoidal projection, are equally divided into small tiles
and distributed 1 each rendering processor. The processor
applies the transformation matrix to its local data and
transforms them into image space coordinate. Each
rendering processor produces patches of images scattered
in the final image. The image patches are thenmerged and
composited into the final image using a binaryswap
method. The image tiles can be rendered in any order
and there is no communication required in the
transformation stage. The rendering processors synchre
nize globally before the final compositing begins. The

rendering speed is determined by the slowest processor in
the transformation stage.

Several optimization techniques have been imple
mented in RIV A to improve the rendering speed and image
quality:

Data pyramiding Also known as mipmapping. The
terrain is rendered at a different resolution based on its
distance to the viewpoint. This technique is used to
reduce computation as well as eliminate aliasing problem
in the far field. We generate data pyramid on the fly to
save memory smce a the cost of some computation
overhead.

Culling. Several culling techniques are used to eliminate
the input tiles that fall outside the field of view of a given
viewpoint. Horizon Test calculates the distance from the
viewpoint to the center of each tile and eliminates the tiles
that fall behind the horizon. This test can eliminate almost
half of the tilesin a global dataset. Tile Test eliminates the
tiles whose projected areas fall outside the viewport.

C. Functionality

There are several unique features that distinct RIVA
from other terrain renderers:

Multiple Data Representations — Internally, RIVA repre

sents the data using a spherical model regardless it is a
global dataset or aregular grid dataset. Externaly, RIVA
can process data in either 2D Cartesian, 3D Cartesian, or

3D Polar coordinates. The dataset can be stored in either
Sinusoidal projection to save space or in Cylindrica
projection for efficient processing. RIVA is flexible and

trying to accommodate different applicaton need and
different data representations.

Multiple Surface Rendering— RIVA can render multiple
terrain surfaces with different resolution, different data
format, and different coverage. The multiple surfaces can
be combined using various blending nethods. Fig. 2 is
an example of alphablending of two surfaces. The top
surface is a grayscale image of Coronado Island at 2.25
meter resolution (Fig. 2c) and the bottom surface is a color
LandSat image at 30 meter resolution (Fig. 28). By setting
the opacity of the top surface to 0.58, it gives you a
colored image at 2.25 meter resolution (Fig. 2b). Fig. 3is
an example of zbuffer compositing. The top surface is a
North Atlantic Ocean surface with color representing
ocean surface temperature. The bottom surface is a
topographic map of the ocean bottom. The top surface is
raised up so that the two surfaces can be separated.

Fig. 2 Multiple Surfaces composited by blending, (a) 30 meter LandSat, (b) two surfacesblended with
the 2.25 meter dataset at opacity=0.58, (c) 2.25 meter grayscale dataset

Fig. 3 Multiple Ocean Surfacescomposited by zbuffer

Large Datasst Rendering — RIVA adlows out-of-core
rendering for datasets that exceed the capacity of the
physical memory. A lower resolution sample of the
original dataset has to be prepared in advance. RIVA
loads the lower resolution dataset and renders it until the
data pyramiding algorithm identifies that a higher
resolution image tile is needed. The full resolution image
tile will then be loaded into memory. A memory cache is
used to keep the most recent tiles used to reduce disk 1/O.
RIVA aso renders timevarying datasets generated by
simulations. Similar to out-of-core rendering, only the
data for the first time step resides in the memory. The rest
data will be loaded into memory when the animation starts.

High Resolution Animation— RIVA is not only scalable
to large input datasets but also scalable to large image
outputs. RIVA images are not limited to the framebuffer
Size or the screen resolution as other terrain renderers do.
RIVA can render a large image in multiple passes by
partitioning the images into multiple viewports. Theoreti-
caly, thereis no limit to the image sizein RIVA. We have
done three screen panoramic movie and animations in HD
format.

D. Implementation

RIVA has gone through several evolutions. An earlier
version of the algorithm was first developed on Intel
Paragon. The RIVA architecture was designed and first
implemented on the Cray T3D using its shemem libarary.
The Flexible Flyer was implemented using OpenGL and
SGI' s Openinventor APl. RIVA has been used as a
production tool for several animation productsin JPL until
Cray T3D was decommissioned in 1998. In 2001, RIVA
was ported to SGI Origin 2000 using a combination of
shared memory and message passing model. New
functionalities and new tools were added into RIVA to
improve its key frame ediing capability and to read input
image data in standard image formats. The first RIVA
release was made public in 2001.

I11. PARVOX SYSTEM OVERVIEW
A System Architecture

ParVox is a pardld volume rendering system for
either distributed visualization, o r as a rendering APl to be
linked with application programs. As a distributed
visudlization system shown in Fig. 4, ParVVox provides an
X window based GUI program for display and viewing
control, two input modules that read structured and
unstructured 4D datasets in NetCDF format, respectively,
two core renderers, one for structured grid dataset and
one for unstructured grid dataset, and an output module
that supports multiple output formats, including wavelet
image compression format for both loselessand lossy
compressions. The input, the renderer, and the output
modules form a functiona pipeline using MPI for inter
module communication. As a rendering API, ParVox
supplies users with a parald input library to read 4D
structured grid and unstruct ured grid datasets in NetCDF
format, an OpenGL style paralle rendering APl for
graphic controls and a paralel wavelet image compression

library.

Remote Supercomputer(s)

Renderer |
—> Structured
Grid. M
L« Output

Renderer 1 4
—
Input 11 Unstructured 0%%

Grid Decompressor
Network Control

(Cinput] \ [Render] »IComprmor]

Time-stepped Rendered
Simulation Dat: Images
[—=

Input |

W74

Control and Render Commands

L ocal Workstation

Fig. 4 The ParVox System Architecture

ParVox can visualize 3-D volume data as a translucent
volume with adjustable opacity for each different physical
value, or as multiple isosurfaces at different thresholds and
different opacities. It can also slice through the 3D volume
and view only a set of dlices in ether of the three maor
orthogonal axes. Moreover, it is capable of animating
time-sequence 3D datatsets at any selected viewpoint.

B. Paralld Algorithms

ParVox uses a pardld splatting agorithm for
structured grid datasets [2]. Similar to the whole earth
renderer, the splatting agorithm is a forward projection
algorithm that is ideal for paralel execution with object
space decompeosition. The input volume is partitioned
into small interleaving blocks distributed into each local
processor' s memory. Each processor first renders its
volume blocks locally by splatting and compo siting each
voxel to the local accumulation buffer. The subimage is
then composited with other sub-images from other
processors. The global image compositing is done in
pardle by partitioning the image space into small
interleaving regions and assigni ng multiple regions to each
of the processors. Communication is required to
redistribute the sub -images from the splatting processor to
the compositing processor. The splatting can be done in
any order, but the image compositing has to be in either
the front-to-back or the back-to-front order. Therefore,
fina compositing cannot start until the splatting process is
finished and al the sub-images have been sent to the
destination compositing processor. However, the sub -
image will be redistributed asynch ronously right after it’ s
been generated. By overlapping the splatting and the
image redistribution process, a major portion of
communication overhead can be hidden.

The unstructured grid volume renderer in ParVox is an
adaptation of Ma s cel-projection parallel renderer [3].
The volume is represented as a list of vertices and a list of
tetrahedron cells. The cells are evenly distributed into the
loca memory of the rendering processors in order to

achieve better load balancing. A synchronized
preprocessing is then performed to organize the local cells
into a space partitioning tree. The local cells are
partitioned into spatid regions such that each region
represents equal amount of rendering load. The cells will
be rendered in the order of its region location in al the
processors. Each cdll is scan converted into ray segments
in the image coordinates. The ray segments will then be
routed to the merging processor for final merging. The
scan conversion and ray-segment redistribution are
interleaved in a similar fashion as in the splatting
algorithm. The ray-segment can be merged as long as the
adjacent rays are both present. Therefore, the spatial
partitioning tree alows the cdls in the neighborhood be
rendered about the same time, thus redutng the memory
usage and improving the overal efficiency. When the
scan conversion and ray-segment merging are finished,
each processor sends its completed sub-image to the output
module where the final image is assembled, compressed
and sent out to display.

C. Functionalities

ParVVox was designed for distributed visudization
assuming the end user has a low bandwidth network
connection and a limited function workstation at his
desktop. It aso assumes that the user has access to a
remote superconputer and has his dataset residing on the
supercomputer’ s disk. ParVox has unique features to
facilitate interactivity in such an environment:

Functional Pipeining-- ParVox contains three modules,
the input module, the rendering module, and the output
module. Each module can be run in paralel and three
modules are connected as a functiona pipeline using MPI
to communicate with each other. The functional pipeline
allows overlapping data input, rendering, and image
compression. We can use differentnumber of processors
for each module to balance the load of each module.

Paralld Wavdet Compresson — A parallel implemen
tation of ERIC (Efficient resersible Image Compression)
[4] agorithm is used in ParVox for image compression. It
supports both loseless and lossy compression and it alows
for progressively accurate approximation based on the
network bandwidth. Empirical results show that a low -
frequency image can preserve its image quality with
insignificant degradation at a compression ration as high as
50.

X Window Based User Interface— The ParVox GUI was
designed using X/Motif and runs on any Unix
workstation. It provides a user-friendly, interactive
environment for viewing and rendering control. Multiple
control panels are provided to control the direct rendering,
iso-surface classification, viewing transformation, lighting

and materia setting. ParVox also integrates the color and
opacity editing program, icol [5] developed by AHPCRC,
University of Minisota Animation control and ins tant
playback is also built in for animation . The rendering
parameters can be saved into a NetCDF file and be
restored later or used for batch-mode processing.

D. Implementation

The core renderer of ParVox was first implemented on
the Cray T3D and Cray T3E using shmem onesided
communcation API. It was later ported to MPI and runs
on SGI Origin 2000, HP Exemplar System and Beowulf
Clusters. The ParVox GUI runs on any system capable of
running X window. Two ParVox system has been released
for public use The document is available at
http://alphabits,pl.nasa.gov/ParVox .

V. APPLICATIONS

RIVA has been used as a production tool to produce

animations using LandSat and Planetary datasets for public
outreach and scientific education. ParVox has been used
to visualize various time -varying, multiple-parameter, 3D
datasets. In this paper, we will use ocean modeling
application to demonstrate how these two visudization
tools help scientists to disco ver scientific results from their
massive modeling data.

Ocean modeding has played an important role in
obtaining comprehensive understanding of world ocean
circulation, monitoring current climatic conditions, and
predicting future climate changes. JPL has conducted a
40-year simulation of a 1/6 degree ocean model [6] for the
North Atlantic Ocean using Paralel Ocean Program (POP)
[7]. The total data generated by this moded is 2.8
Terabytes assuming a snapshot is saved for every three
simulation days. The model generates both 2D data, such
as surface temperature and surface height, and 3D data,
such as tem perature, salinity, and velocity.

We used RIVA to visualize the 2D ocean surface data
and ParVox to visualize the 3D volume data. In Fig. 6b,
the ocean surface temperature data is represented using a

Fig. 5 North Atantic Ocean (@) the velocity volume with the ocean bottom map, (b) ocean surfacetemperature
shaded relieved by the surface height, (c) salinity volumewith red for high concentration, (d) using dicing to

cut through the salinity volume.

spectrum colormap with purple for low temperature (@
Celsius) and red for high temperature (32? Celsius). The
image is then shaded relieved by the surface height data
The height variation is very visible around the north coast.
The combined dataset is then wrapped around a global
earth image dataset. The ocean surface has the opacity set
to 1. In this image, we can see the separation of Gulf
Stream off the coast of Cape Hatteras which is not
detectable in alower resolution ocean model.

Fig. 5a shows the magnitude of the ocean velocity
vector volume. The transfer function was set such that
only the high value has non -zero opacity thus highlighting
the high velocity area. It is clear that most of the Atlantic
ocean is cam except for the coastal area. The white
background is the ocean bottom topography that provides a
reference for this mostly translucent image. In a Syear
animation of the ocean velocity, it is clear to see the
progression of the mesoscale eddies in the Caribbean Sea.
Fig. 5¢c and Fig 5d are two different representation of the
salinity volume. Salinity is another driving force of ocean
energy transportation. The high sdine water in the
Mediterranean Sea (shown in red) is trying to escape to the
Atlantic Ocean via the narrow Gibraltar strait. Fig. 5¢ uses
atranducent volume to highlight the high sdinity area and
Fig. 5d cut out a quarter of the volume using the dlicing
capability of ParVox in order to see the salinity changesin
the lower depth of the ocean.

We produced animations for &l the variables shown
in Fig. 5. The animations help scientists to understand the
major features and the evolution of the Caribbean Sea
eddies in 3D space. It dso give scientist an ef fective
visua tool to prevail their scientific results to the genera
public.

V. CONCLUSION

We have presented two parald rendering systems,
RIVA for terrain visualization and ParVox for volume
rendering in this paper. Although designed for different
applications, the two systems share the same design
philosophy:

?? Scalability — Both ParVox and RIVA are scaable to
input dataset size, output image size, and the machine
size. With the built -in out-of-rendering capability,
there is no limit to the size of the data they can render.
Hardware renderers are limited to its physica
capacities, such as graphic memory and texture
memory. Once the problem size is beyond its
hardware limit, it either has serious performance
degradation or simply cannot handle it.

?? Flexibility— ParVox and RIVA were built to address
gpplication’ s need. Each daaset has its unique
characteristics and may require a different way to
visudlize it. Our systems are equipped with arich set

of rendering modules and a userfriendly GUI for a
user to pick and choose the best rendering parameters
for his dataset.

?? Didributed Visualization — Distributed visualization

is the core design concept for ParVox and RIVA. Our

systems are optimized not only in computation, but

adso in end-to-end frame delivery over low speed
network.

We are currently applying RIVA and ParVox to
visudize the Earthquake simulation datasets. Similar to
the ocean modd, the earthquake datasets contain both
surface data such as surface deformation and B volume
such as stress field. Hopefully by the time of the
conference, some of the preliminary results can be
presented.

ACKNOWLEDGMENT

The work presented in this paper was sponsored by
NASA Eath Science Technology Office (ESTO),
Computational Technologies Project, formerly known as
the Earth and Space Science Project (ESS). The ocean
data sets presented was generated by Yi Chao of JPL. |
would like to thank James Tsiao, Scott Whitman, William
Duquette, and Dave Curkendall for their contribution in
the design and implementation of ParVox and RIVA
systems. | dso like to thank JPL’ s Supercomputing
Project for providing the computer resource and technical
support. Finally, | would like to thank Robert Ferraro, my
project manager, for his trust and hs technical guidance in
all these years.

REFERENCES

[1] P. Li, W.H. Duquette, and D.W. Curkendall, “RIVA: A
Versatile Parallel Rendering System for Interactive Scientific
Visudization,” |EEE Transactions on Visualization and
Computer Graphics Vol2, No.3, pp 186-201, 1996

[2] P. Li, S. Whitman, R. Mendoza, J. Tsiao, “ParVox A
Parallel Volume Rendering System for Distributed
Visualizetion,” 1977 Proceedings of |[EEE Symposium on
Parallel Rendering, pp.7-14, 1997

[3] K. Ma and T.W. Crockett, “A Scahble Padle Cel -
Projection Volume Rendering Algorithm for Three
Dimensiona Unstructured Data,” 1977 Proceedings of IEEE
Symposiumon Parallel Rendering pp.95-104, 1997

[4 E. Mgani, “ERIC: An Algorithm for Efficient Reversible
Image Compression,” JPL New Technology Report
20141/9777 January 1977.

[5] “AHPCRC Deveoped Softwarelcol”, http://mww.arc.umn,
edu/software/bob/icol .html.

[6] Y. Chao, P. Li, P. Wang, D. Katz, N. Cheng, and S. Whitman,
"Ocean Modeling and Visudization on Massively Pard |el
Computers,” Industrial Strength Paralled Computing:
Programming Massively Paralld Processing Systems
Morgan Kaufmanns, 1998.

[71 R.D. Smith, JK. Dukowicz, and R.C. Malone, “ Paralléel
Ocean Generd Circulation Modeling,” Physica D, 60, 38-61,
1992.

